If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20t^2-13t+2=0
a = 20; b = -13; c = +2;
Δ = b2-4ac
Δ = -132-4·20·2
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-3}{2*20}=\frac{10}{40} =1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+3}{2*20}=\frac{16}{40} =2/5 $
| 3c+17=20 | | 2/3x-6=7/9x-5 | | 6(c+1)=18 | | 17(d+1)=17 | | 19y+17=17 | | x+8/3=-2 | | f^2-12f+32=0 | | x+2/5+x-1/2=x+1/3 | | 1/4-2/3=m | | y-2 +6 = 6 | | 5h^2+9h=-4 | | .333333333333333s+14=26 | | 2/3+1/4=m | | 2/3+m=1/4 | | 2/3-m=1/4 | | 9a-6a=10-2a | | 1/4m=2/3 | | 9y^2=4+7y | | 5x-4=-3x+20 | | 12x+90+2x+5+17x-14=360 | | 12(x+5)=(x-30) | | 2d^2-3d^2-20=0 | | 4p-2=-18 | | y=5,000+20,000 | | 9x-22+5x-7+61+34=360 | | 3x+1=6(x/2-2) | | 360=11w+11w+5w+4+5w+4 | | x/2+4-2=18+6 | | 12x-10=x+1 | | 2x/3+10=-2 | | 1+2/3=-4a | | 6x+22+4x+11-33-9x=44 |